NASA Challenge Team
Final Report

Ben Bernhard, Riley Egan, Brendan Kopf, George O’'Sullivan, & Cara Ravasio

Spring 2020

Table of Contents:

1 Introduction .. I
2 Detailed System Requwements
3 Detailed Project Description....

3.1 System Theory of Operatlon

3.2 System Block Diagram....

Final Report

3.3 Detailed De3|gn/0perat|on of Locallzatlon

4.1
Plan...
4 2 Test Result Interpretatlon

5 Users Manual/Installation Manual

5.1 How to Install Your Product...
5.2 How to Setup Your Product....

5.3 How the User Can Tell if the Product is Worklng
5.4 How the User Can Troubleshoot the Product..............cccocvceveiveierecirnnenn,
6 To Market DeSign ChaNQES.........coiereeieirse ettt esv s e s esssss st e e e
7 CONCIUSIONS ...ttt e ettt eesene s e e e ees s sessan e see s e seseesenseessensansnns

B APPENAICES ...ttt ettt e e e es s e e et e e e st e e s s e saee

NASA Challenge 1

o NN

©

3.4 Detailed Design/Operation of Object Detectlon...1 2
3.5 Detailed Design/Operation of Raspberry Pi...........cccocvcicicrcececesnecsecsen.
3.6 Detailed Design/Operation of PIC32/Custom Board.........cccccoeeverernenne...
3.7 Detailed Design/Operation of Communications..............ccccoeureerencsnanne.
3.8 Detailed Design/Operation of MOTOrS.........cc.oeevveieeveeeerevreee e e
L0 INEEITACES ..ottt e e et et e e e ers s

4 System INtegration TESTING ...t et et ene st e enr e snee s

14
15
19
20
22
23

Test

w23

...23

24

weeen 24
28

EE Senior Design

25
25
26
27

28

Spring 2020 Final Report

1 Introduction (about 3-5 pages)

As humans begin to spend more time in harsh, extraterrestrial environments, new
technologies for applications often reserved for Earthbound missions must emerge.
One such mission is the search and retrieval of some known object by a team of
robots. The first segment of this mission, the search, is what motivated the NASA
Centennial Challenges Program (CCP) Space Robotics Phase 2 (SRC2). The original
challenge is for virtual simulations of robotic systems, but we adapted it for physical
rovers. Moreover, we focus specifically on the electrical engineering aspects of the
mission and only require a trivial rover mechanical design. Essentially, our modified
version of this project tasks us with designing and constructing a system of two
autonomous rovers capable of navigating through a partially unknown lunar
environment, finding a predetermined object, and estimating the position of the object
relative to the rovers’ starting location. Each aspect of this design reference mission
(DRM) is largely directed by a couple of main design constraints.

Firstly, communication latencies between Earth and the rovers and the limited
bandwidth that exist in such a channel dictate that the robotic system be able to
function completely autonomously for long periods of time. While long distance
communication between the Earth and Moon is outside the scope and budget of this
project, we still require that the rovers be autonomous.

Additionally, the location of the object will likely be in a dimly lit or completely dark area
(e.g. in a crater or on the dark side of the moon). So, the rovers must be able to function
in these lighting conditions.

Furthermore, we consider a time sensitive mission, in which the object must be
located as quickly as possible.

Lastly, NASA pays special attention to the radiation and thermal environments in which
the device must operate. Both of these environmental hurdles will affect the
processing and sensing capabilities of the solution. While thermal concerns are well
within our scope, we do not have the resources to properly address radiation concerns,
so we simplify this constraint by only requiring simple shielding.

We propose a two rover system to accomplish the mission outlined in the problem
description. These two rovers work together to find and report the location of the

NASA Challenge 2 EE Senior Design

Spring 2020 Final Report

object of interest in the following way.

First, each rover searches a different area of the moon for the target object while
remaining within communication range of one another. Each rover navigates the
environment, keeping track of its location relative to its starting location and avoiding
obstacles detectable by a range finder.

Once the rover detects the object using object recognition technology, the rover
reports the picture to Earth or a nearby lunar gateway for confirmation. Once the object
in the image is confirmed to be the object of interest, the rover estimates the object's
position using the rangefinder data and motor encoder data and transmits this
location to the other rover.

When the other rover receives this signal, it travels to the communicated location, finds
the object of interest, and makes its own estimate of the object’s location. Using these
two independent estimates of the object’s location, a final estimate will be made and
recorded. This concludes the mission.

An overview of a given rover in the system is illustrated in Figure 1.

Usually, lunar missions would require the rovers to have a long term power supply
(generally nuclear). However, we consider the question of a reliable long term power
source outside the scope of our project since our focus is on object identification,
autonomy, and communication.

We will address radiation and temperature concerns by operating our rovers only on
the dark side of the moon. Since the rovers are already expected to operate in dark
environments, this is a reasonable simplification. The dark side of the moon will shield
us from the moon'’s higher temperatures and most of the strongest radiation from the
sun. With only low temperatures and ambient radiation to worry about, we can
reasonably use simple radiation shielding and escape the need for electronics working
at high temperatures.

We will demonstrate basic swarm communication by creating two robots to
communicate with each other. In theory if two robots can work together, a larger
swarm could communicate in the same general way. We will be using Zigbee for our

communication protocol.

To successfully identify and locate the prespecified object of interest, the rovers will

NASA Challenge 3 EE Senior Design

Spring 2020 Final Report

patrol their paths and use a camera and flash light to identify obstacles and potential
objects. The distance between the rover and obstacle or object will be determined by
implementing a laser rangefinder (see figure 1). If a potential candidate for the object
of interest is found, a picture will be taken for identification purposes. A convolutional
neural net will be taught to identify the specific object of interest; we plan to use
OpenCYV for this step and train it using simulated pictures. If the target is determined to
be the object, then it's location will be recorded and communicated to the other rover.

While the rover is travelling through the partially known terrain, there may be some
objects in the rover’s path that the rover needs to avoid. We plan on using the laser
rangefinder as the obstacle detection for the rover. The laser rangefinder will be
directed at obstacles in the rover's path so the rover knows the location of the
obstacles and can take the proper measures to avoid unknown obstacles.

We plan on having the rovers cover a partially known terrain which means the rover
can have a predetermined path programmed in. The rovers will be deployed from a
known starting location. The partially known environment will have the basic topology
of the moon so we can avoid mountains and craters for our rover paths. We will have
the rover traverse this terrain while avoiding any obstacles that may come up and then
moving back to the programmed path.

Due to the global pandemic, we were unable to construct our final design of the rovers.
However, given our experience with the subsystems we speculate that our final design
would have met our expectations. We can thank the very sophisticated and expensive
LIDAR system we planned to implement for our optimism. We speculate that the most
likely part of our design to underperform would be the motor control subsystem if only
because we are inexperienced in designing mechanical structures and accounting for
all possible sources of stress on our driving system.

2 Detailed System Requirements (several
pages)

Given time and monetary restrictions, our project involves the minimum number of
rovers to be considered a swarm (two rovers). However, our system should be easily
scaled up, so our demo of two rovers provides a basic proof of concept for a larger
system. It is possible to think of each of our rovers as a node in the swarm which
communicates with it's adjacent nodes so the swarm is completely integrated.

NASA Challenge 4 EE Senior Design

Spring 2020 Final Report

PIC32:

We used a PIC32 on our custom board that is responsible for low-level motor
control, stepping down the power source voltage, and low-level communication
between the two robots. The low-level motor control consists of applying PWM
motor drive signals to individual motors according to high-level commands sent
from the Raspberry Pi via serial communication. The power will be received from
the LiPo battery and stepped down to various voltages according to Figure 1 by
using DC-DC converters.

Raspberry Pi:

The Raspberry Pi reads and interprets the data from the IMU, Decawave and
Camera subsystems. The Pi communicates via 12C with our custom PCB. The
PCB relays the range finder information, information from the servo motors and
communication from the zigbee module. The Pi communicates with the IMU
through UART and the Decawave module through SPI. The camera
communicates by CSI. The camera module we are using comes with the Pi and it
works natively with the Pi. The Pi is also in charge of doing the math for finding
the location of the rovers. The Pi receives information from the Decawave and
calculates the location of the rovers based on this information.

DecaWave:

We are using the Decawave 1001 Module which gives the position of each rover
relative to 4 known and fixed anchors. According to decawave, the x-y position is
usually accurate to within 20cm of the actual location. So, we should be able to
meet our requirement of determining an object’s position to within 2 meters of its
actual location. The decawave module uses time of flight sensing to determine
the position. This meets the constraint being feasible in a lunar environment, not
relying on GPS.

Zigbee:

For our local communication between our rovers we are using a Zigbee module.
Zigbee is a local communication protocol that can use mesh networking, P2P
networking, and several other protocols. We are using the Zlghee modules in a
mesh network. Although we are only demonstrating two rovers, the mesh
networking provides a scalable solution. The Microchip SAMR30M18A Zigbee

NASA Challenge 5 EE Senior Design

Spring 2020 Final Report

module has a max range of 400 ft and operates at 2.4 GHz. The Zigbee module
communicates over SPI with the PIC32.

Pi Camera & Computer Vision:

The camera is used to identify whether an object is an obstacle or an object of
interest. The camera is constantly scanning the area in front of the rover and
using OpenCV to locate objects. The camera is attached to the Raspberry Pi
which runs OpenCV for real time computer vision.

The range finder is used to find the distance from the rover to the object of
interest and for obstacle avoidance. Once the camera identifies an object, the
camera will analyze the object to determine if it is an object of interest. If it is not
an object of interest, the rover's path will adjust accordingly. If the object is the
object of interest, then the range finder will be pointed at the object and the
distance measured. The exact location of the rover will be known with our
location system. With the location of the rover and the distance from the rover to
the object, the location of the object of interest will be easy to find. The range
finder is able to communicate with the Pi via I2C.

c

We are using an IMU (BNOO55) that provides estimation for the angle of the
rover. The IMU includes the 3 standard IMU sensors: gyroscope, accelerometer,
and magnetometer. However, a magnetometer would not work on the moon,
since there is no magnetic field on the moon. Therefore, we will first attempt to
obtain accurate angle estimation through the gyroscope and accelerometer, only.
Our IMU choice provides the output of all three sensors separately. This way, we
are able to choose between using all 3 sensors or only 2 sensors.

Servo Motors:

Our bots use servo motors for the drive train. The servo motors are 360 degree
continuous rotation servo motors controlled with a simple PWM signal that will
be sent from the PIC32. The velocity of the servo motors can be varied and
controlled with the PWM signal.

Path-Planning ROS node:

NASA Challenge 6 EE Senior Design

Spring 2020 Final Report

We are using path-planning ROS nodes to set waypoints for our rovers to move
to. The path is pre-programmed into the rovers as the search location is known.
The various subsystems also act as ROS nodes that can update the
Path-Planning ROS node if an object of interest is found. Once the object of
interest is found, the object’s rough location will be set as a waypoint and the
rover will move to the object’s location according to the path-planning ROS node.
The rover’s previous location on the programmed path will be set a another
waypoint so that after the rover is done finding the location of the object it can
move back to the path

Multicell Lipo Battery:

We determined that a 7.4V (5000mAh) Lipo battery provides the required amount
of power for all of our different systems. The battery is rechargeable so that the
rovers can be retrieved, powered up, and sent back out on another mission.
Considering the power draw of our entire system, the LiPo battery should be able
to power everything for 3 hours. The LiPo battery is also lightweight which is
essential for our budget and motor power.

3 Detailed project description

NASA Challenge 7 EE Senior Design

Spring 2020

3.1 System theory of operation

Power ON

Y

Start Navigation
Stack

p-| Load next waypoint

Y

Plan global path to
waypoint

Y

Plan local path

]

Y

Move along local
No path

Reached
waypoint?

Yes

Final waypoint?

Received
verification
request?

Y

Start Object
Detection

No | l
Potential
S target ohject -
detected?
Yes
Y
Yes Save current
L . position &
orientation (pose)
Y
Set new waypoint
toward potential
object
Ohject
Yes matches target
object?
Y
Responding
to verification Mo
request?
\J
Yes ’
Y Call for verification
Transmit verification
result
L < Objectverified?
Yes
Y
Save estimated
location of object
Stop B

Final Report

Na

Set previously
saved pose as
next waypoint

Figure 1. Overall Rover Swarm System State Machine Diagram

NASA Challenge

No

EE Senior Design

Spring 2020 Final Report

3.2 System Block diagram

Localization
DecaWave IMU
I I
SPI } { UART
Communications
5V Raspberry Pi SPI Zigbee
ROS ——————— PIC32 - Module
3.3V OpenCV 12C
PWM
CSli 12C —
[| Motors +
Camera LIDAR e e

Object Detection

Figure 2. Proposed electrical system overview of a single rover in a two-rover system

3.3 Subsystem 1: Localization

DecaWave:

Decawave 1001 Module gives the position of each rover relative to 4 known and
fixed anchors. According to decawave documentation, the x-y position is usually
accurate to within 10cm of the actual location. So, we should be able to meet our
requirement of determining an object’s position to within 2 meters of its actual
location. The decawave module uses time of flight sensing to determine the
position. This meets the constraint being feasible in a lunar environment by not
relying on GPS. The DecaWave will receive power of 5V from the Raspberry Pi
and a clock signal from the Pi for SPI.

The DecaWave (dwm1001) module on each rover is used for self-localization
(accuracy within 10cm) by wirelessly connecting to other DecaWaves in the area

NASA Challenge 9 EE Senior Design

Spring 2020 Final Report

(~30m radius for each module outdoors) using Ultra Wide Band (UWB)
communication. The DecaWave system requires four anchors and as many tags
as the user would like. The anchors must be placed in known locations in order
to get a baseline for calculating distance. The tags are then able to self-locate
(within 10 cm) by measuring its distance to each of the anchors. The
self-localization is updated every 100ms (rate of 10Hz). Our project
demonstrates this system working with four anchors and two tags, but the
number of tags can be scaled up easily.

We have not done testing, but online user groups and the DecaWave product
manufacturers recommend increasing the number of anchors as the size of your
area increases, the number of objects in your area increases, and as the number
of tags increases significantly in order to maintain desired performance and
accuracy.

The DecaWave communicates with our Raspberry Pi via I2C as one ROS node (an
executable capable of communicating with other nodes via ROS). This
information is used in path-planning/following and when an object of interest is
identified. During path-planning/following, the DecaWave's self-localization is
used to verify that the rover’s trajectory correctly corresponds to its pre-planned
path. Also, when a rover detects an object that is not an object of interest and
must avoid it, the DecaWave location information is used to navigate around the
object and to return to the pre-planned path after successful avoidance. Finally,
when the rover identifies an object of interest, the self-localization is used to
identify not only the location of the rover but also the location of the object (in
conjunction with computer vision). The location of the object of interest is
transmitted from the DecaWave to the Pi which sends this information to the
Pic32 to be packaged and sent wirelessly to the other rovers in the swarm via the
zigbee module.

We chose to use the DecaWave module for its accuracy and speed of
localization, and for its relatively easy implementation in the updated DWM1001
model. The old DWM1000 model, used by many other senior design groups, was
difficult to integrate and communicate with; it was often the road-blocker for
these senior design projects and barred the group from successfully completing
their project. Most of the issues the past groups faced are addressed by the
DWM1001's easy user interface and built in data computation.

We explored the idea of using the DecaWave modules to transmit rover
locations to other rovers, thus removing the need for a Zigbee wireless

NASA Challenge 10 EE Senior Design

Spring 2020 Final Report

communication module, but the DWM1001 module does not allow customization
of messages sent via the DecaWave. It is possible that the messages could be
customized using the DWM1000 model, but we determined the integration was
not worth our time when Zigbee modules are cheap and user friendly.

IMU:

The IMU (BNOOS55) will provide estimation for the angle of the rover. The IMU will
include the 3 standard IMU sensors: gyroscope, accelerometer, and
magnetometer. However, a magnetometer would not work on the moon, since
there is no magnetic field on the moon. Therefore, we will first attempt to obtain
accurate angle estimation through the gyroscope and accelerometer, only. The
IMU will receive power from the Raspberry Pi and a clock signal from the Pi for
12C.

The IMU (BNOO055), which stands for inertial measurement unit, also supplies
data to the navigation stack by providing acceleration and gyroscope data. The
BNOO055 supports a variety of configurations that combine the accelerometer,
gyroscope, and magnetometer to generate sensor fusion data on relative and
absolute orientation.

The information from the IMU is sent to the navigation stack to be used by other
ROS nodes accessing the navigation stack. In particular, the accelerometer and
gyroscopic data can be used to determine the speed and orientation of the robot
and contributes to the path-planning system. Without this information, we would
not be able to determine whether our robot is correctly oriented to follow the path
or determine the distance it has traveled along the path.

We chose the BNOO55 as our IMU because of its ability to perform sensor fusion
of the accelerometer and gyroscope data to produce relative orientation
estimations without any additional hardware or software processing. The
BNOO55 package contains an ARM CPU that fuses the data and provides
standard UART and 12C interfaces for retrieving orientation estimations.

Subsystem Test:

Due to the global pandemic we were unable to fully integrate the IMU and
DecaWave into a complete localizalization subsystem for testing. However, if we

NASA Challenge 11 EE Senior Design

Spring 2020 Final Report

were to test the functionality of the subsystem we would execute the following
steps:

1) Place four DecaWave anchors in known locations

2) Place the rover in a known location and orientation

3) Verify the orientation and location information of the rover gathered by the
Pi by comparing it to the rover’s known orientation and location

If we pass this verification test, then the localization subsystem is operating as
expected.

3.4 Subsystem 2: Object Detection/Identification

Range Finder:

In addition to the Pi Cam, the laser rangefinding system, the LIDAR, is used to
detect objects in the path of the rover. The LIDAR works by sending out a laser
pulse and detecting the scattered light to learn about objects in the environment.
We used the Hokuyo URG-04LX-UG01 Scanning Laser Rangefinder which costs
$1,080. Dr. Hai Lin was kind enough to let us borrow these expensive pieces of
equipment from his lab for our project. Our backup LIDAR was the Garmin LIDAR
Lite-v3, which costs $130 and two are already owned by the Senior Design lab.
Our LIDAR receives 5V and a clock signal for 12C from the Pi.

The Hokuyu LIDAR has an impressive detectable range of 20mm to 5600mm,
scans 10 times a second (100ms/scan), and a 240° scan area with 0.36° angular
resolution. This high quality scan gives us information about both path blocking
objects and potential objects of interest. When combined with the visual
information from the camera, objects can then be classified as either objects of
interest or not. If they are not, the LIDAR information can be used to determine
how the rover should deviate from its pre-planned path in order to avoid the
object before returning to its pre-planned path.

Our LIDAR has been used in enough robotics projects that a ROS node has been
implemented for it to act as a driver. The data from our LIDAR ROS node is fed
into the rest of the navigation stack to be made available to other ROS nodes
accessing this stack.

The Garmin LIDAR is much lower quality than the Hokuyu LIDAR, so we do not
believe we could reasonably improve our current setup given the senior design
budget. However, if money were not an obstacle, there are even higher quality

NASA Challenge 12 EE Senior Design

Spring 2020 Final Report

LIDARs from the same manufacturer as the Hokuyu LIDAR. This would give our
system even greater range and accuracy.

Camera:

As previously mentioned, the DecaWave module does not act alone in the
localization of an object of interest. In addition to the DecaWave, we use a Pi
Camera attached to the rover to obtain a measurement of the distance to the
object given its size in the camera’s field of view. The Pi Cam receives 3.3V and a
clock signal for CSI from the Pi.

The Pi Camera is also responsible for object identification. We calibrate the ROS
computer vision program to identify specific objects (objects of interest) given
their shape, size, and color so that when that object of interest enters the
camera’s field of view, the program can track the object and identify the distance
from the camera to the object. This distance information is transmitted to the Pi
and is combined with the DecaWave information to give the location of the object
of interest. This location is then passed from the Pi to the Pic32 to be
transmitted to the nearest rover via Zigbee.

We chose to use a Pi Camera because it is designed to be used with a Raspberry
Pi and lends itself to the ROS computer vision program we implemented. To
improve results, more time could be spent calibrating the ROS program to the
objects of interest, and a higher quality camera could be used.

Subsystem Testing:

Due to the global pandemic, we were unable to integrate the LIDAR and the Pi
Cam for a complete object detection/identification subsystem. However if we
were to test it, we would follow these steps:

1) Physically place a large object (not an object of interest) somewhere in the
rovers’ pre-planned path

2) Set the rover at its starting position, turn it on, allow it to follow its path

3) Verify that the rover detects the object and subsequently avoids it by
observing whether it alters its path to compensate for the object.

4) Stop the rover

5) Replace the large object in the path with an object of interest

6) Set the rover at its starting position, turn it on, allow it to follow its path

NASA Challenge 13 EE Senior Design

Spring 2020 Final Report

7) Verify that the rover detects and identifies the object of interest by
observing whether it stops to evaluate the position of the object before
returning to its path

If we meet these criteria, then our rover is detecting and identifying objects as
expected.

3.5 Subsystem 3: Raspberry Pi/Path Planning
Raspberry Pi:

In addition to the Pic32 processor, we use a Raspberry Pi (Model 3B) to run ROS
(robot operating software), an open source library to ease the programming of
robots. ROS handles the operation and computation of 5 different systems and
sensors; (1)path planning for the rovers’ baseline movement and object
avoidance, (2)computer vision for object detection/identification/avoidance,
(3)LIDAR for object detection/avoidance, (4)IMU (BNOO55) for acceleration and
gyroscopic information, and (5)DecaWave (dwm1001) module for location
acquisition. We use one SPI, one UART, two 12C, and one CSlI interface on the Pi
to control/communicate with the DecaWave, IMU, PIC32, LIDAR, and Pi Camera
respectively. The Raspberry Pi will receive power from the PIC32 Custom Board.
The on board voltage converter will step down our input voltage from 5V to 3.3V
for the logic. The Raspberry Pi has an on-board clock which will be used to
control the Decawave and IMU.

We chose to use a Raspberry Pi specifically to operate ROS. ROS is not
technically an operating system in itself, and requires a base operating system in
order to operate, so the Linux OS on a Raspberry Pi offered a convenient solution.
So, the Pi handles all systems pertaining to ROS, including the computation of
localization and object detection data, and the Pic32 handles all other systems
requiring computation.

Path Planning ROS Node:

The path planning ROS node is one of the most important aspects of our
project, even though it does not use any hardware directly. This node uses the
open source package ‘nav_core’ to plan a given robot’s trajectory. It creates a
global path based on a number of waypoints on a pre-loaded, low detail map of
the search area’s topography. These waypoints are selected by the user, such
that the search path for each rover will cover the entire search area. Then the

NASA Challenge 14 EE Senior Design

Spring 2020 Final Report

algorithm uses the LiDar node, IMU node, and DecaWave node data available to
continuously adjust the path of each rover to avoid obstacles not defined in the
stored map. The path is adjusted to avoid obstacles while still hitting each
waypoint. Low-level controls are computed based on the high-level plan by using
the open source package ‘move_base." The appropriate output is then
communicated to the servo motor node through ROS ‘topics.’

We chose to use ROS specifically for this portion of our project because it is so
well equipped to handle problems like these. Without the ROS node, we would
waste time designing our path-planning control algorithm from the ground up.

Subsystem Test:

Due to the global pandemic, we were unable to construct a rover capable of
moving, and we were therefore unable to physically verify the path
planning/following component of our design. We were able to make a virtual
simulation of our path planning/following which verified our path-planning
algorithm. However, if we wanted to test that our robot was following its
designated path we would follow these steps:

1) Plan a simple path for the rover

2) Layout tape on the ground that approximates the planned path for the
rover given its starting location (make sure the path is unobstructed)

3) Set the rover down, power it up, and verify that it begins to follow the
designated path

If we successfully completed these steps, then the Raspberry Pi is successfully
executing the path-planning subsystem

3.6 Subsystem 4: PIC32 Custom Board

Custom Board:

The custom board itself will be responsible for low-level motor control, stepping
down the power source voltage, and local communication between the two
robots via zigbee. The low-level motor control will consist of applying PWM
motor drive signals to individual motors according to high-level commands sent
from the Raspberry Pi via 12C communication. The custom board will get its
clock signal from the internal PIC32 clock.

NASA Challenge 15 EE Senior Design

Spring 2020 Final Report

The power circuitry onboard will consist of two TI TPS63061 DC-DC Buck-Boost
Converters. These supplies have programmable outputs, so one supply provides
3.3V to sensors and the PIC32 MCU, while the other provides 5V to the servo
motors. A non-programmable 3.3V version of this device (TPS63060) exists.
Using this non-programmable version would cut down the amount of peripheral
passive components required. We did not use the non-programmable version in
order to reduce the number of unique parts on the design. This allowed us to
recycle the layout from one regulator for the other. Additionally, the TPS63061
provides an input voltage range of 2.5V-12V. This is essential, since our 2S LiPo
battery has a nominal voltage of 7.4V, which drops as the battery is depleted. The
TPS63061 is also capable of providing up to 2A, which is enough for our
sensors/MCU at 3.3V and for the servo motors at their peak current draw (~1A
each) at 5V.

When designing with the TPS63061, peripheral passive components must be
chosen carefully, according to the part data sheet. The datasheet recommends
several specific power inductors, of which we chose the Coilcraft XFL4020-102.
This specific inductor seems to be TlI's default choice in their documentation.
Additionally, the resistors used in the output-programming voltage divider
(R11/R12 and R14/R16) had to be selected based on the desired output voltage.
Tl provides the pertinent resistor value equation in the data sheet.

When laying out the device on a PCB, the data sheet example layout must be
closely followed. It is essential to manage ground noise by providing separate
control and power ground pours. The output power planes must be quite large to
handle maximum output currents.

In addition to providing power to onboard components via these buck converters,
our PCB is also responsible for providing power to the Raspberry Pi via a UBEC
(universal battery-eliminating circuit) with input and output wires. This
battery-eliminating circuit allows us to power the Raspberry Pi with clean 5V
power. The Pi consistently requires 2.5A, and this UBEC provides a maximum of
3A, making it an ideal choice for this application. 16-gauge wire pads have been
provided on our PCB to connect the input of the UBEC to the battery voltage. The
output of the UBEC can be connected to the external power pins on the Pi.

Local communications are handled by a Microchip ATSAMR30M18 Sub-GHz

802.15.4 RF Module. This device provides an all-in-one solution for local wireless
communications. It includes an onboard 16MHz crystal oscillator, balun, RF

NASA Challenge 16 EE Senior Design

Spring 2020 Final Report

filtering, and proper shielding, allowing us to be efficient with available board
area. The ability to transmit in the sub-GHz range (915MHz specifically) is
essential, since transmitting in the more common 2.4GHz range would likely
cause interference with the DecaWave modules used for rover self-localization.

The SAM30 data sheet sets specific instructions for the RF output routing. To
make the layout process easier, we decided to use an SMA antenna rather than a
chip antenna. The SMA connector provides the 50-ohm matched impedance
required for efficient transfer of power between the module and antenna. Had we
chosen a chip antenna, we would have had to pay much closer attention to the
effect of our PCB stackup on the impedance of a much more complicated RF
trace element. We eliminated this concern. Additionally, nothing could be routed
in the area under the device on either layer of the board for fear of causing
interference.

Our PCB also hosts an IMU (inertial measurement unit), which provides the
Raspberry Pi, which is running ROS, orientation information to aid in path
planning. This device was chosen based on its ubiquity, availability, and relative
ease of configuration. Additionally, this device handles data synthesis onboard
and outputs usable data, removing this burden from our software.

Though the BNOO55 will be passing information directly to the Raspberry Pi via a
UART interface, it must be hosted on our custom board. The connection from our
board to the Pi will be made with jumpers between headers. In retrospect, we
should have interfaced the BNO055 with the PIC32 and simply passed the sensor
data across the I12C interface that connects the PIC32 to the Pi. This is an
obvious improvement in space management.

PIC32:

This system is built around a PIC32 (PIC32MX795f512H) processor, which
manages communications between rovers and coordinates movement (motor
control). We chose this microprocessor because of our familiarity with the
programming interface and its diverse and numerous modes of operation and
communication. In particular, we required at least two output comparator pins to
control the PWM signals sent to our servo motors, and at least one set of 12C and
SPI pins for communication to the Raspberry Pi and Zigbee Module respectively.
We code the PIC32 using C programming.

NASA Challenge 17 EE Senior Design

Spring 2020 Final Report

Originally, we had chosen an Atmel microprocessor (from the SAMC21 series)
for its advertised ease of use with motor control, but we struggled to learn how to
use a new programming interface in a reasonable time, and we had trouble
getting the hardware setup/code uploaded using the SAMC21 bootloader.

The PIC32 microcontroller is arguably overqualified for the small number of
tasks we are using it for given it's large package size and high pin count. With
more research, a different PIC32 package could be chosen to accomplish the
same tasks with a smaller package.

Multicell LiPo Battery:

The entire system is powered by a 7.4V (5000mAh) multi-cell LiPo rechargeable
battery. Given the maximum current draw of our system, the battery should be
able to power our system for around 3 hours. We determined 3 hours is more
than enough time for our rovers to find the object of interest in the current search
area of our project.

In addition to the target voltage and its longevity, we chose this battery because
it is rechargeable and specifically made for RC cars which means it is designed
to handle sudden acceleration. Additionally, it is also relatively lightweight.

If money were not an object, a higher quality power source could be chosen. In an
ideal world, our rovers would operate off of MMRTGs which harness heat from
the radioactive decay of plutonium into electricity.

Subsystem Testing:

Due to the global pandemic, we were unable to construct and test the Custom
Board. However, our test plan would include the following steps to verify
functionality:

1) Check custom board for shorts between ground and 5V, 3.3V using a
multimeter

2) Verify LiPo Battery voltage is the expected 7.4V using a multimeter

3) Attach LiPo Battery to DC-DC converters, then verify the output voltage is
the expected 5V using a multimeter.

4) Verify all 3.3V and 5V points on the Custom board using a multimeter

5) Test functionality of custom board by attaching servo motors and
operating both at the same time (run simple script)

NASA Challenge 18 EE Senior Design

Spring 2020 Final Report

6) Test functionality of custom board by sending message via zigbee to a
receiver (run simple script)

If all of these tests were completed successfully, then the custom board is
operating properly.

3.7 Subsystem 5: Communication
Zigbee:

Since we decided to save time and effort by using the DWM1001 model
DecaWave, we also use a Zighee module to communicate information between
the rovers wirelessly.

Zigbee is a local communication protocol that uses mesh networking. Although
we are only demonstrating two rovers, the mesh networking provides a scalable
solution. The Microchip SAMR30M18A Zigbee module has a max range of 400 ft
and operates at 2.4 GHz. The Zigbee module communicates over SPI with the
PIC32. The Local Communication will receive 3.3 V from a DC to DC converter on
the PIC32 custom board which will step the original 7.4V from the LiPo battery to
3.3V. The Local Communication will receive a clock signal from the PIC32
internal clock and will communicate over SPI with the PIC32.

The Zigbee module has a maximum communication range of 400 ft. We
determined this range is acceptable since we would eventually be working with a
rover swarm and can therefore communicate through the swarm by simply
transmitting information to the nearest adjacent rover and allowing it to
propagate through the system in this manner. However, to conserve power, we
would like to operate at a maximum range of around 200 ft.

The Zigbee module constantly checks for reception of a signal from another
bot, but only transmits information when the rover has located an object of
interest. Once the rover has determined the location of the object of interest
using a combination of the DecaWave and Pi Camera, that location is transmitted
to the other rover. The other rover must then save its current location, deviate
from its pre-planned path, drive over to the transmitted location, and take its own
measurement of the location of the object of interest. Once this process is
completed, it returns to its previous location on the pre planned path and
continues to follow this route to completion.

NASA Challenge 19 EE Senior Design

Spring 2020 Final Report

We chose the Zigbee module for its ample documentation, ease of use, and
because there are two different operating frequencies for zigbee communication.
Since both the DecaWave and the Zigbee are communicating wirelessly, it's
important to ensure they are communicating on two different frequencies and
not interfering with each other. The DWM1001 operates at 6.5GHz, but also has
an onboard bluetooth module that operates at 2.4GHz, so we planned to avoid
both of these operating frequencies. Later we discovered this bluetooth module
could be deactivated, but given our original knowledge we chose Zigbee modules
that operate at 916MHz instead of 2.5GHz.

In the future, since the DecaWave’'s bluetooth module can be deactivated, either
Zigbee module could be implemented.

Subsystem Test:

Testing individual zigbee modules is easy as it requires a simple script that
sends and receives information from other zigbee modules which can be
indicated by the onboard LEDs. However, we did not have an opportunity to test
the operation of our zigbee modules in the fully integrated rover system. If we
were going to verify the Zigbee operation, we would execute the following steps:

1) Place an object of interest in the pre planned path of one of the rovers

2) Set both rovers down at their respective starting positions, turn them on
and allow them to follow their pre-planned paths

3) Verify that the two rovers’ zighee modules are operating correctly by
observing whether the rover that finds the object of interest calls over the
other rover for verification and then whether that second rover returns to
its previous location

If we pass this test, then the zigbee module is operating as expected in our
system.

3.8 Subsystem 6: Motors

Motors:

We use two servo motors (DS04-NFC) to drive the movement of our robot. The
DS04-NFC is a 360° continuous rotation servo motor with a maximum torque of
5.5kg-cm at ~5V. We chose wheels with a 3.3cm radius, so we determined that
the rover could weigh no more than 4 Ibs, though we would like to have a safety
factor of at least 0.5 Ibs, so our target weight would be 3.5 Ibs. To limit the

NASA Challenge 20 EE Senior Design

Spring 2020 Final Report

weight, we decided to 3D print the chassis of the rover. The servo motors will
receive power directly from the 7.4V LiPo battery.

The Servo motors are controlled by PWM signals that come from the Pic32’s
output comparators. The PWM signal controls both the speed and direction of
the servos. The PWM signal to be sent to the servos must be determined by the
needs of the path-planning ROS node then sent via the Pi to the Pic32 to control
the output to the motors. For example, if an object needs to be avoided, the
path-planning ROS node must determine how far to the right or left it would like
the rover to turn, and then how far forward it must drive before turning back to
get on to the path. Similarly, if the rover is traveling through a curve in the
pre-planned path, a message will need to be sent to the motors to control the
speed at which the rover turns, the turn radius, and the direction of the turn.

We chose servo motors to drive the rovers because of the accuracy in
controlling the servos’ speed. By using servos, we removed the need for
encoders and/or motor controllers associated with DC motors which reduces
cost and weight of our rovers. We chose the DS04-NFC servos in particular
because there are about six already owned by the senior design lab, they operate
at 5V, and have a reasonably high torque.

Servo motors are a good low cost option, however, if money were not an
obstacle, higher torque DC motors with encoders and a decent motor controller
(probably a sabretooth) would be a superior option for a fully functional rover.
Obviously on the moon, more power would be needed for the rovers to move
around than is provided by the small servos we have chosen.

Subsystem Test:

Verifying the proper operation of individual servo motors is very easy and only
requires a simple script to be run on the PIC32 to send a proper PWM signal to
each motor. However, we were unable to complete a more meaningful evaluation
of our drive train since we could not construct our final design. If we were to test
our system though, we would follow these steps:

1) Write and run a script on the PIC32 to execute a straight path, 90° turns in
both directions, and 45° turn in both directions

2) Turn on the system, observe that the behavior executed by the rover
follows this script and is accurate

3) Plan a straight path for the rover

NASA Challenge 21 EE Senior Design

Spring 2020 Final Report

4) Turn on the rover, verify that it is moving in a straight path

5) Plan a path with 90° turns in it for the rover

6) Turn on the rover, verify that it completes these turns in the correct
direction

7) Plan a path with gradual curves in it for the rover

8) Turn on the rover, verify that it is able to complete these curves

If all of these tests are passed, then we have verified that the servos are capable
of accurate manipulation of the rover and that the PIC32 is receiving and properly
responding to path planning instructions sent to it by the Pi.

3.9 Interfaces

Our project uses three main serial interfaces UART, SPI, and I12C. We would use the
following very basic setups for each:

UART:

9600 Baud rate
8 bit data

No Parity bit

1 Stop bit

No flow control

SPI:

8bit data transfers
Sample in the middle
Output on the falling edge
Clock idle state low

12C:

e Baud rate: BRG=31

NASA Challenge 22 EE Senior Design

Spring 2020 Final Report

4 System Integration Testing

4.1 Describe how the integrated set of subsystems was tested.

Due to the global pandemic, we were unable to integrate and test our subsystems.
However, we would execute each subsystem test as laid out in Section 3 of this
document. After these were each completed we would begin our Full System Test by
executing the following steps:
1) Plan paths for each rover in a given 15sqft area
2) Lay out tape to identify the square area and the preplanned-paths for an observer
3) Place objects (not of interest) randomly in each path
4) Place a few objects of interest randomly in the square area
5) Set the two rovers down at their respective starting positions
6) Turn on the rovers, allow them to begin to follow their pre planned paths
7) Observe and document each rover’s behavior when following and/or returning to
its path and when confronting an object of interest or obstacle
8) Verify that each object of interest is identified by the rovers and that both rovers
make assessments of the object’s location
9) Repeat as necessary/desired with different object placements within the 15sqft
area
10)Quantify the rovers’ accuracy at locating objects of interest by comparing their
measurements of the identified objects’ locations to the known locations of the
objects of interest and tracking how many objects of interest are missed by the
system (if any)

By following this plan, we will be able to quantify the performance of our rover swarm
system and verify that it is working as expected and meeting our expectations.

4.2 Show how the testing demonstrates that the overall system meets the design
requirements

Our design requirements stated that we should design and construct a system of two
autonomous rovers capable of navigating through a partially unknown lunar
environment, finding a predetermined object, and estimating the position of the object
relative to the rovers’ starting location.

The autonomy of our rovers is demonstrated by the path-following and object
avoidance behaviors of our rovers. Presently, the user only has to turn on the rovers
when in their starting positions, and the rovers will then fully function and operate as
expected.

NASA Challenge 23 EE Senior Design

Spring 2020 Final Report

The navigation of a partially unknown lunar environment is demonstrated by the
object-avoidance behavior of our rovers. If the rovers are able to navigate around
detected obstacles, then we have successfully navigated the partially unknown
environment.

The discovery of the predetermined object of interest is demonstrated by the object
detection/identification behavior of our rovers. If the rover detects and identifies the
predetermined object of interest, then calls over the other rover, we will have proven that
the rovers are capable of finding the predetermined objects.

The estimation of the object of interest’s position relative to the rover’s starting location
is demonstrated by the object identification and localization behavior of our rovers.
Both rovers will document the location of the objects of interest, and this information
will be saved to a .txt file in each rover's memory. These locations can be accessed by
the user once the rovers have completed their mission, and in our test scenario, we can
verify their accuracy, which we would expect to be within around +/- 10cm given the
DecaWave and PiCam’s combined information. By gathering a document of these
locations, we will prove the rovers can estimate the positions of predetermined objects.

5 Users Manual/Installation manual

5.1 How to install your product

So, you just bought a Baymax and Baymin? To install your new state-of-the-art robots,
you must first be on the moon. If you are currently on some other celestial body, quickly
fly to the moon before resuming installation. Make sure to bring all components of your
Baymax and Baymin quick starter kit.

First, you will need to determine where to set up your system on the moon. If you have
any general idea where your lost object could be, try to pick a relatively close location.
Once you have picked a spot, go ahead and start unpacking your kit. Inside, you will find
two robots (Baymax and Baymin) and a number of DecaWave anchors.

Before unboxing the robots, you must deploy the anchors. The anchor points should be
placed in known locations. Record the position of each anchor point and input the

coordinates into the friendly user interface. Next, you may unbox the rovers and proceed
to product setup.

5.2 How to setup your product

NASA Challenge 24 EE Senior Design

Spring 2020 Final Report

Training for an object

First, you need to select the object you would like Baymax and Baymin to find. Your
object may be one of the predefined objects stored in each of the robot's memory. To
check, navigate to the “Predefined Objects” tab of the robot user interface. If your object
is one of the objects listed, select it. If not, you will need to train for a custom object.
Although this capability is not currently available (as of May 2020), a future software
update will allow you to train a neural network to recognize your custom object. To train
for a custom object, you will need many pictures of the object in various lighting
conditions and backgrounds. It is recommended that you upload at least 10,000 images
of your desired object. However, the more images you upload, the better the
performance of your robots will be.

Setting up path

Next, you will need to participate in determining the search path of Baymax and Baymin.
The user interface will prompt you to select a number of waypoints. The waypoints are
locations that either Baymax and Baymin will navigate toward, while searching for the
object along the way. Select your way points by picking an even distribution of locations
within the area you would like the robots to search.

Initiate the Search

Now you are ready to begin searching for your lost item. Simply power each robot on
and set them down on the surface. Make sure to place Baymax and Baymin facing
opposite directions, so that they search opposite ends of the search area. Once this is
complete, the robots will take it from there.

5.3 How the user can tell if the product is working /
troubleshooting

If your robots begin to navigate to the selected waypoints, then your product is working.
If you find that your robots are correctly navigating to the selected waypoints, but they
are still not locating the object of interest, then your search area may be too small.
Begin troubleshooting by increasing the search area. This can be done by selecting
more waypoints through the user interface.

If you notice that your robots come close to the object of interest but do not recognize
that it is the object of interest, then the robot’'s camera may be malfunctioning. First,
check to see if there is any dust or debris obstructing the camera’s field of view. If so,
remove it using a lint-free cloth.

NASA Challenge 25 EE Senior Design

Spring 2020 Final Report

If you notice that your robots are not correctly navigating to the selected waypoints,
then your product is not functioning properly. Begin troubleshooting by visually
inspecting the robots’ wheels. If you notice a flat tire, you will need to get that replaced.

6 To-Market Design Changes

There are a number of changes we would make to our design before taking it to
“market” (the moon). Due to budget constraints, our current rovers do not use a
3-dimensional LiDAR system, which would allow us to identify obstacles such as craters
that would not fall into our current 2-dimensional field of vision. Including this higher 3D
LIDAR in our design would improve both object avoidance and path planning.

Additionally, we would like to provide better shielding for our electronics, given the EMI
levels on the moon. With multiple sensitive RF components onboard, our design is
especially susceptible to interference. The ATSAMR30M18 is shielded adequately for
use on earth under normal conditions, but this stock shielding may not be adequate for
the moon.

We would also like to increase the operating temperature range of our components. For
instance, the TPS63061 can function in a maximum free air temperature of 85°C down
to -40°C, yet the temperature on the moon can fluctuate between about 127°C and
-173°C. Clearly, this one flaw would render our entire system useless.

As for the power source, we certainly would not use a LiPo battery on a final design
meant for long-term operation on the moon. Ideally, our design would be nuclear- or
solar-powered.

Currently, our rovers save the location of the object in a .txt file in on-chip memory. We
would prefer to have this information transmitted wirelessly to a control station so that
the information can be obtained and used quickly.

In our mechanical design, we would use a more robust chassis that is able to surmount
small-to-medium sized obstacles. This could be achieved through the use of a
rocker-bogie design, which uses six wheels, with two of the wheels mounted on swing
arms.

NASA Challenge 26 EE Senior Design

Spring 2020 Final Report

7 Conclusions

While our time working on our beloved rovers, Baymax and Baymin, was cut short
due to COVID-19, we feel that we have sufficient groundwork that our rovers could
easily be constructed and up and running with minimal extra effort. We hope that this
document could act as a guide to future Notre Dame senior EE design groups who may
be looking to do a similar project. As our project stands, we have chosen every
component that will be in the rovers and written all the code for the various subsystems.

At this stage of the project, we find ourselves reflecting on what possible
improvements we could have made to make our design that much better. One
improvement we identified was that we could have used a microprocessor that was
less beefy than the PIC32 we chose. The PIC32 is capable of so many different
functions and our application did not require many of these functions. We also would
have had the IMU connect to the PIC32 instead of the PI. The Pl has many different
sensors attached to it as it is and by connecting the IMU to the PIC32 we could lighten
the PI's load while keeping the same functionality which would ultimately lead to a more
reliable design.

Even though our rovers would have been made and tested on Earth, we feel our
rovers would be Moon Ready™. Our solution to the specified NASA challenge is a
lightweight, cost-effective, and efficient design. In addition, our solution is easily
scalable, a feature we thought was highly important for any NASA mission. With
minimal components and maximal effectiveness, our sleek design is one that could be
in use for many years to come.

NASA Challenge 27 EE Senior Design

Spring 2020 Final Report

8 Appendices

8.1 Hardware Schematics

LiDAR Schematic: Hokuyo's URG-04LX-UGO01

9375) w42)
|
1 o
1 &0
4 I . =] L
|I- I;AD
L el
=4
136 2!
5 -
@'
o,

CN USB 0 W3 Doph

40

NASA Challenge 28 EE Senior Design

Spring 2020

Camera Schematic:

Pi Camera V2.1

Final Report

g 2
concsioon 1 2 csoo
= 1 9z
' concsi o4 csio
e con s oon] s
T — ' Ml BoNoT 0GNDS [y
= DLPTTSNS0OMLZL NO8 g X
5 GON_CSI_BIN w1 R2 U mad
o —cs 1 2 e
) e iy
3 con s cuan e 1006 1oos con_cs) o csiom HERP 5
s CON_CSLCLKP OGND7 3 ——1 cs) oo
- 10 e we DN [5¢—— TSN
i e oGy con_csi orp csiow R —
iEm a = - e o8 ouon
i Y TH scL g oion 25 o3
I o — 7 = I SOETV e (T
i LT 0GNDS |5y soLive
3y otz) c2 SCL "5 STA_TVE.
a] L
DMG102aUY 1y o
SEWTSR 1 STELE X 2 csioue 1005
RS AN) DFITNG 30050 4v
almls s
oLprsNaOBLZL
g
e
o
b 015
u
we A3
3 § ourmur (& ———
Hm e —
cs 2 228
ENABLE U i 1005
1008 Ezo— ™ E
e
I ~ Faz -
600@100MHz - ¥z
5 e u 2z
eon i o P
2520
uz ’
2 vour [-£
M out H— & =
c12 ENAR ™ PAMZ301GAAR 120
H o &
100 2
BE H 4
T 2mwe
g o
X PAD
ATSHAZOAA . ©Raspberry Pi 2018
Raspberry Pi 7
www.raspberryplorg
ey
Bsgbory Pl Carnes V2.1 Mk Stkvson
TR
" RPLGAM Y2 1 21
s G A T ———

NASA Challenge

29

EE Senior Design

Spring 2020 Final Report

Raspberry Pi Schematic: Model B

4x 2.2mm diameter holes

2 = —n 8.5 4x 2.0mm radius corners

i
b I © o I Raspberry Pi

. H][0T T hommre 1 5.
i L : = I TITLE RASPBERRY PI CAMERA MODULE V2.1

i | M (R R \ W DATE 12/11/2015 | ReF | RPI-CAM-V2_1
il i [ol = o 4 i ‘ oR | Mike Stimson | V0| Jomes Adans

]
25 13.8 2 S, 11T

14.5 = = = 5.5
23.862 = =

CAMERA. DISPLAY . bi = i I
8 i =—H bk L 1eee -] A

NASA Challenge 30 EE Senior Design

Spring 2020

Custom PCB - MCU

Final Report

‘ IMU_RST/4.22
I IMU_UART RX/4.2?

IMU_INT/4.27 l ipg
MU_UART TX/4.27 1o o
] 3 4
SO OB
] 20 08
Pl 12C SDA | O O
PI_I2C_SCL
+5V
PWML
GND
+5V
PWMZ
GNp

Q,
2
o

cont

3
2
1

CON-MOLEX-43XX-3V

CON-MOLEX-43KX-3V

VDD VDD
VDD
(? vss
A 1
swi swicneesmT TS C24 _C1 c2 c3 c4
1 100 0.1uF |01uF |0.1uF |0.1uF |0.1u]
<=y i’w —AM— —| VPPMCIR -
ey é o R3 —<| vbD - .
-3 vss
" GND GND MCLR>— PGDL — PGD
—3 pac GND
% ﬁﬂ
¥u fri B GG
9
o
GND GND
VDD
PWM2Z —
2 Koo X2
R
IngdereeLsuRRXX%Y b |
fLLDBEEegZ2REEES B
Soado >00xx250
gooag 588272
oy
tazas EEEZR63 s ———<PLI2C_scL
PMDS/RES 8328 SOSCOITICK/CNOIRG14 (22
SCLAPMDE/RES 2586 SOSCICNURC1S (i Pl 12C_SDA
SDA/PMDT/RET 0623 OCUINTORDO {12
RG6/USTX/PMAS/CNEISCK2 R RDLVICAINTAPMCSL [2
SDA4IURXIPMAAICNO/SDI2/RGT E=EQ RD10/SCLUIC3IINTAPMCS2 f12
SCLAUTX/PMAIICNIO/SDOZ/RGE. 838 RDS/SDAL/IC2/INTZIUARX 12
WCIR S8 ROBICUINTURTCC [£2 Ghp
UBRX/PMA2/SS2/CNILIRGY S® VSS
vss] RroisicLko/oscz (22 by
VDD . RC12/CLKIIOSCL (5
RBS/ANS/CNT/C1IN+ £ voo (2
RBA4/AN4/CNG/CLIN- = 3 Yo = owrez B
RBI/AN3/CNS/C2IN+ 3 £ i DRG3 (31
RB2/ANZICNA/SSL/C2IN- g & Sago VUSBISCKX/RF6 f32
RBUANL/CN3VR-PGCI/EMUCL GrhY do¥BEE VBUSIRF7 |2
RBO/ANO/CN2IVR+PGD1PMAG 3 53€g 2200983 USBID/RF3 [
o) RE0E EZ60RS
a 2EGS M
da 22358 S58Z59
58 gS8EE ££3087
S8 3053 g§33iRiy
& &5
2z $2%% 5590
S20w2835, 333839
R EE TR LR
Bmel il smponmDESS
CEIicrorssrrraaa
El H‘vggm“t
= ZIG_SPI_MOSIf2.7?
] R1
20— T— Voo ZIG_SPI_MISOfR.7?
hvd ZIG_SPI_SCK/2.2?
GND | GND
ZIG_SPI_SS/2.
Date: not saved!
TETLE: MCU_PIC32 Sheet: 1/L

NASA Challenge

31

EE Senior Design

Spring 2020 Final Report

Custom PCB - Power

Ugs
1uH

2 1 |
BAT, + VIN u 1;@ §J 5V
3 ®
clo _Jeu vour [-
C14 c20 c21

8|
10uF | 10uF | VAO-8 vaux B
C16 4 e (E<FB

.
) L
3 PSISYNC e o :gﬁ 22uF | 22uF | 22uF
Ta,luF . el
op

.
GND 2 onp ponp [BENO [
Ho &fo TPS63060 & o3 _lcis Ghp
CND. R TTiopr

GRp)
AT Psi[, | Wirepads for UBEC to Pi
P$2
cfip
BAT psif .| Wirepads for Battery)
g
Psal
cfio ¢
4 3 |5
ic2 o

> 2 1
BAT VIN (58 10 $ VDD
3 L2 ﬁ)
c12 _|ci13 i vour |2
100F ~ [TouF [VAL = 8 c1s _|c22 _|co3
C17 4
|5

. = ~
PSISYNC =3 22uF | 22uF | 22uF
""aluF PG xY v
cfio £ X oo penp (PEHO

o G% D TPS63060 e !

clp w§é _Lcao oNB
3
L = 10pF
GND gi{’b

Date: not saved!

TITLE: MCU_PIC32 Sheet: 3/L

NASA Challenge 32 EE Senior Design

Spring 2020

Custom PCB - ATSAMR30M18

Final Report

VDDVDD
&
rxy
a%g%z SEaue s
10| & o
- | RESET GNDDTCT I
| 5 +
T % % o
- -4 L——QO8 cN\o
1 >
-
o X
A3
O|fo
4 (L
g 4 m‘ h| g .‘E‘ i
8 85 8 8 8 b
g€ 32 2 58 2 3 2
Q [a o [y o GND2 13
2 !
L ey | ND3
o vop 2 lﬂuiloﬂ"i GND
22
22§ Gua < . ;
44 pazs |1 cs[7] R
RFOUT - . -]
PA27 % -
a1 -2 <ZIG_SPI_scKkA2?]
¢ = = GND
38 2 8 5 par 8
<7 2 3 2z 3 3 PAB
GND B RO & ZIG_SPI_MOSI1.7?
FEEEEE L
|
|
EI.—-
GND ZIG_SP|_MISO/L.7?
.
L1 x
RFOUT
oo
z z
& & .
3 CusDNP 3 CwiDNP
GND
GND GND
Date: not saved!
TITLE: MCU_PIC32 Sheet: 2/4

NASA Challenge

33

EE Senior Design

Spring 2020 Final Report
Custom PCB - BNO055
D {IMU_UART_TX/1.77 |
(MU_UART RX77]
l
&g
CNUi © e cz8)} st
“T8enk 200 | 5 @ - W& GND
Gho® & I E—
o GND NRESET -— MU RST/IL.77]
=] lgb\éw Og &hp
GND
=
s T
8 ©
B
S R
&8 |2
g
5
Date: not saved!
TITLE: MCU_PIC32 Sheet: 4/L

8.2 Code

Object recognition python code

USAGE

python ball_tracking.py --video ball_tracking_example.mp4

python ball_tracking.py

import the necessary packages

from collections import deque

from imutils.video import VideoStream
from picamera.array import PiRGBArray
from picamera import PiCamera

from threading import Thread

import numpy as np

import argparse

import cv2

import imutils

import time

NASA Challenge 34

EE Senior Design

Spring 2020

class PiVideoStream:
def _init__(self, resolution=(320, 240), framerate=32):
initialize the camera and stream
self.camera = PiCamera()
self.camera.resolution = resolution
self.camera.framerate = framerate

self.rawCapture = PiRGBArray(self.camera, size=resolution)
self.stream = self.camera.capture_continuous(self.rawCapture,

format="bgr", use_video_port=True)

initialize the frame and the variable used to indicate

if the thread should be stopped
self.frame = None
self.stopped = False

def start(self):

start the thread to read frames from the video stream

Thread(target=self.update, args=()).start()
return self
def update(self):

keep looping infinitely until the thread is stopped

for f in self.stream:

grab the frame from the stream and clear the stream in

preparation for the next frame
self.frame = f.array
self.rawCapture.truncate(0)

if the thread indicator variable is set, stop the thread

and resource camera resources
if self.stopped:
self.stream.close()
self.rawCapture.close()
self.camera.close()
return
def read(self):
return the frame most recently read
return self.frame
def stop(self):
indicate that the thread should be stopped
self.stopped = True

construct the argument parse and parse the arguments

ap = argparse.ArgumentParser()

ap.add_argument("-v", "-video",

help="path to the (optional) video file")

ap.add_argument("-b", "--buffer’, type=int, default=64,
help="max buffer size")

args = vars(ap.parse_args())

define the lower and upper boundaries of the "green"
ball in the HSV color space, then initialize the

list of tracked points

greenLower = (29, 86, 6)

greenUpper = (64, 255, 255)

pts = deque(maxlen=args["buffer"])

NASA Challenge 35

Final Report

EE Senior Design

Spring 2020 Final Report

vs = PiVideoStream().start()

allow the camera or video file to warm up
time.sleep(2.0)

##HH AR AR Calibration ######SHHHHBHAHHSHAHH
For calibration of distance calculation

KNOWN_DISTANCE =12.0

KNOWN_WIDTH =1.5

image = cv2.imread("ball_calibration.jpg")

def distance_to_camera(knownWidth, focalLength, perWidth):
compute and return the distance from the maker to the camera
return (knownWidth * focalLength) / perWidth

resize the frame, blur it, and convert it to the HSV
color space

image = imutils.resize(image, width=600)
blurred = cv2.GaussianBlur(image, (11, 11), 0)
hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV)

construct a mask for the color "green”, then perform
a series of dilations and erosions to remove any small
blobs left in the mask

mask = cv2.inRange(hsv, greenLower, greenUpper)
mask = cv2.erode(mask, None, iterations=2)

mask = cv2.dilate(mask, None, iterations=2)

find contours in the mask and initialize the current

(x, y) center of the ball

cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)

cnts = imutils.grab_contours(cnts)

center = None

find the largest contour in the mask, then use

it to compute the minimum enclosing circle and

centroid

¢ = max(cnts, key=cv2.contourArea)

((x, y), radius) = cv2.minEnclosingCircle(c)

M = cv2.moments(c)

center = (int(M['m10"] / M["'m00"7), int(M['m01"] / M["m00"]))

draw the circle and centroid on the frame,

then update the list of tracked points

cv2.circle(image, (int(x), int(y)), int(radius),
(0, 255, 255), 2)

cv2.circle(image, center, 5, (0, 0, 255), -1)

show the frame to our screen
cv2.imshow("Image’, image)

NASA Challenge 36 EE Senior Design

Spring 2020 Final Report

focalLength = (radius * KNOWN_DISTANCE) / KNOWN_WIDTH
HHHHBHH AR H AR H AR H AR H AR HHRHH AR HRFH AR AR H AR RS

keep looping
while True:

grab the current frame
frame = vs.read()

handle the frame from VideoCapture or VideoStream
frame = frame[1] if args.get("video", False) else frame

if we are viewing a video and we did not grab a frame,
then we have reached the end of the video
if frame is None:

break

resize the frame, blur it, and convert it to the HSV
color space

frame = imutils.resize(frame, width=600)

blurred = cv2.GaussianBlur(frame, (11, 11), 0)

hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV)

construct a mask for the color "green”, then perform
a series of dilations and erosions to remove any small
blobs left in the mask

mask = cv2.inRange(hsv, greenLower, greenUpper)
mask = cv2.erode(mask, None, iterations=2)

mask = cv2.dilate(mask, None, iterations=2)

find contours in the mask and initialize the current

(x, y) center of the ball

cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)

cnts = imutils.grab_contours(cnts)

center = None

only proceed if at least one contour was found
if len(cnts) > 0:
find the largest contour in the mask, then use
it to compute the minimum enclosing circle and
centroid
¢ = max(cnts, key=cv2.contourArea)
((x, y), radius) = cv2.minEnclosingCircle(c)
M = cv2.moments(c)
center = (int(M['m10"] / M["'m00"7), int(M['m01"] / M["m00"]))

only proceed if the radius meets a minimum size
if radius > 10:
draw the circle and centroid on the frame,
then update the list of tracked points
cv2.circle(frame, (int(x), int(y)), int(radius),
(0, 255, 255), 2)

NASA Challenge 37 EE Senior Design

Spring 2020 Final Report

cv2.circle(frame, center, 5, (0, 0, 255), -1)

update the points queue
pts.appendleft(center)

loop over the set of tracked points
foriin range(1, len(pts)):
if either of the tracked points are None, ignore
them
if pts[i - 1] is None or pts]i] is None:
continue

otherwise, compute the thickness of the line and

draw the connecting lines

thickness = int(np.sqrt(args|'buffer"] / float(i + 1)) * 2.5)
cv2.line(frame, ptsli - 1], ptsli], (0, 0, 255), thickness)

Update distance
inches = distance_to_camera(KNOWN_WIDTH, focalLength, radius)
cv2.putText(frame, "%.2fft" % (inches / 12),
(frame.shape[1] - 200, frame.shape[Q] - 20),
cv2.FONT_HERSHEY_SIMPLEX,
2.0, (0, 255, 0), 3)
show the frame to our screen
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & OxFF
#if the 'q' key is pressed, stop the loop
if key == ord("q"):
break

stop the camera video stream
vs.stop()

close all windows
cv2.destroyAllWindows()

Low Level Servo Motor C code for PIC32

#include <stdio.h>

#include <stdlib.h>

#include <xc.h>

#include "configbits-16ex8.h"

#include "SDIib16.h"

NASA Challenge 38 EE Senior Design

Spring 2020 Final Report

#include <sys/attribs.h>

#define init_duty_cycle 3870 //(cw=994-3560; stall= <990 and 3562-3845 and >6405; ccw= 3848-6405)
#define period 49999; //20ms

J*

*

*/

int main(int argc, char** argv) {

//Servo 1 Setup

T2CONbits. TCKPS=2; //1:4 pre-scaler

PR2=period; //Set the Period for Timer2

TMR2=0; //Choose 32 bit count register for Timer2
OC1CONbits.OCM=0b110; //OC1 set for PWM without fault pin
OC1RS=init_duty_cycle; //Set secondary register duty cycle (update this register)

OC1R=init_duty_cycle; //Set primary register with initial duty cycle

//Servo 2 Setup

T3CONbits. TCKPS=2; //1:4 pre-scaler

PR4=period; //Set the period for Timer4

TMR4=0; //

OC2CONbits.OCM=0b110; //0OC2 set for PWM without fault pin
OC2RS=init_duty_cycle; //Set secondary register duty cycle (update this)

OC2R=init_duty_cycle; //Set primary register with initial duty cycle

//Enable Timers and Output Compare Registers

NASA Challenge 39 EE Senior Design

Spring 2020

T2CONDbits.ON=1; //Turn on Timer 2
OC1CONDbits.ON=1; //Turn on OC1
T4CONDbits.ON=1; //Turn on Timer 4
OC2CONDbits.ON=1; //Turn on 0C2
while(1); //infinite while loop

return (EXIT_SUCCESS);

}

Main.c file for Zigbee code

(For full code go to

Final Report

http://seniordesign.ee.nd.edu/2020/Design%20Teams/nasa/Zigbee/)

/ kkkkkkkkkkkkkkkkkkkkkkkk H E AD E RS kk /

#include "task.h"
#include "asf.h"
#include <asf.h>

#include "sio2host.h"

#if defined(ENABLE_NETWORK_FREEZER)
#include "pdsDataServer.h"
#include "wlPdsTaskManager.h"

#endif

#if (BOARD == SAMR30_XPLAINED_PRO) || (BOARD == SAMR21_XPLAINED_PRO))

#include "edbg-eui.h"

#endif

NASA Challenge

40

EE Senior Design

http://seniordesign.ee.nd.edu/2020/Design%20Teams/nasa/Zigbee/

Spring 2020 Final Report

JRHHIRRRRII AR Rxxxxx DEFINITIONS #Hhhrttt bbbk kkk Ak Ak Ak |
#if (BOARD == SAMR30_MODULE_XPLAINED_PRO)

#define NVM_UID_ADDRESS ((volatile uint16_t *)(0x0080400AU))

#endif

// location found indicates that the other rover found an object

#define LOCATION_FOUND (1)

/************************** PROTOTYPES *kkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkk /
void ReadMacAddress(void);
void init_spi(SercomSpi spi);

unsigned char write_spi(SercomSpi spi, unsigned char val);

int main (void)
{

bool freezer_enable = false;

irg_initialize_vectors();

system_init();

delay_init();

cpu_irg_enable();

#if defined (ENABLE_CONSOLE)

sio2host_init();

#endif

NASA Challenge 41 EE Senior Design

Spring 2020 Final Report

// Read the MAC address from either flash or EDBG

ReadMacAddress();

// Initialize system Timer

SYS_Timerlnit();

// Demo Start Message

DemoOutput_Greeting();

#if defined(ENABLE_NETWORK_FREEZER)
SYS_Timerlnit();
nvm_init(INT_FLASH);
PDS_Init();
demo_output_freezer_options();
// User Selection to commission a network or use Freezer
freezer_enable = freezer_feature();

#endif

// Commission the network

Initialize_Demo(freezer_enable);

init_spi(SERCOM1->SPI); // our pic is connected to SPI 1

while(1)
{

Run_Demo();

NASA Challenge 42 EE Senior Design

Spring 2020 Final Report

}

void ReadMacAddress(void)
{
uint8_ti=0,j=0;
for(i=0;i<8;i+=2,j++)
{
myLongAddress|i] = (NVM_UID_ADDRESS]]j] & OxFF);
myLongAddress|i + 1] = (NVM_UID_ADDRESS]]j] >> 8);

}

void init_spi(SercomSpi spi){
//SercomSpi spi = SERCOM4; // sercom 4 controls transceiver?
// initialize spi
spi.CTRLA.bit.ENABLE = 1;
spi.CTRLA.bit. MODE = 0x3; // master mode (0x02 for slave)
spi.CTRLA.bit.CPHA = 1; // clock phase
spi.CTRLA.bit.CPOL = 1; // clock polarity
spi.CTRLA.bit.DORD = 0; // MSB first
spi.CTRLB.bit. MSSEN = 1; // slave select
spi.BAUD.bit.BAUD = 0x0F; // baud rate

spi.CTRLB.bit.RXEN = 1; // enable sending

unsigned char write_spi(SercomSpi spi, unsigned char val){

spi.CTRLB.bit.MSSEN = 0;

NASA Challenge 43 EE Senior Design

Spring 2020 Final Report

spi.DATA bit.DATA = val;

while(!spi.INTFLAG.bit.DRE);

nop();

return spi.DATA.bit.DATA;

8.3 Data Sheet Links

LiDAR Hokuyo's URG-04LX-UG01
https://www.robotshop.com/media/files/pdf/hokuyo-urg-04ix-ug01-specifications.pdf

Raspberry Pi 3 Model B
https://www.alliedelec.com/m/d/4252b1ecd92888dbb9d8a39b536e7bf2.pdf

Pi Cam V2.1
https://www.raspberrypi.org/documentation/hardware/camera/

TITPS63061

https://www.ti.com/lit/ds/symlink/tps63061.pdf?ts=1588272468062

BNOO055 IMU

https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BNO055-DS000.pdf

ATSAMR30M18

http://ww1.microchip.com/downloads/en/DeviceDoc/70005384A.pdf

PIC32MX795F512H

http://ww1.microchip.com/downloads/en/DeviceDoc/PIC32MX5XX6XX7XX_Family)Datasheet

DS60001156K.pdf

DecaWave DWM1001

https://www.decawave.com/wp-content/uploads/2019/01/DWM1001-DEV_Datasheet-1.2.pdf

NASA Challenge 44 EE Senior Design

https://www.robotshop.com/media/files/pdf/hokuyo-urg-04lx-ug01-specifications.pdf
https://www.alliedelec.com/m/d/4252b1ecd92888dbb9d8a39b536e7bf2.pdf
https://www.raspberrypi.org/documentation/hardware/camera/
https://www.ti.com/lit/ds/symlink/tps63061.pdf?ts=1588272468062
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BNO055-DS000.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/70005384A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/PIC32MX5XX6XX7XX_Family)Datasheet_DS60001156K.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/PIC32MX5XX6XX7XX_Family)Datasheet_DS60001156K.pdf
https://www.decawave.com/wp-content/uploads/2019/01/DWM1001-DEV_Datasheet-1.2.pdf

